Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Clare Lee and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.018$
$w R$ factor $=0.042$
Data-to-parameter ratio $=31.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Piperidinium dihydrogenarsenate

A combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{O})=1.73 \AA\right.$; $\theta_{\mathrm{av}}(\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O})=156^{\circ} ; d_{\mathrm{av}}(\mathrm{O} \cdots \mathrm{O})=2.609$ (3) \AA] and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ $\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{O})=1.85 \AA ; \theta_{\mathrm{av}}(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})=169^{\circ} ; d_{\mathrm{av}}(\mathrm{N} \cdots \mathrm{O})=\right.$ $2.740(2) \AA$ A hydrogen bonds defines a layered structure for the title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$.

Comment

The title compound, (I) (Fig. 1), complements other simple ammonium arsenates, such as ethylenediammonium hydrogenarsenate, $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{HAsO}_{4}\right]$ (Averbuch-Pouchot \& Durif, 1987) and propane-1,2-diammonium hydrogenarsenate hydrate, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{HAsO}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Lee \& Harrison, 2003).

(I)

The structure of (I) consists of $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}\right)^{+}$piperidinium cations and $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$dihydrogenarsenate anions. The cation adopts a typical chair conformation with unexceptional geometrical paramaters $\left[d_{\mathrm{av}}(\mathrm{N}-\mathrm{C})=1.484(3) \AA ; d_{\mathrm{av}}(\mathrm{C}-\mathrm{C})\right.$ $=1.515(3) \AA]$. The anion shows its typical tetrahedral geometry $\left[d_{\mathrm{av}}(\mathrm{As}-\mathrm{O})=1.683\right.$ (2) \AA], with the As- O bonds showing their expected lengthening relative to the $\mathrm{As}=\mathrm{O}$ bonds.

As well as electrostatic attractions, the component species in (I) interact by means of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ links (Table 2). The $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$units are linked into a polymeric chain in the polar [010] direction by pairs of hydrogen bonds (Fig. 2) such that every $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$tetrahedron makes an $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ bond to each of its neighbours in the chain. This results in an As $\cdots \mathrm{As}^{\mathrm{i}}$ (see Table 2 for symmetry code) separation of

Figure 1
The asymmetric unit of (I) (30% displacement ellipsoids). H atoms are drawn as spheres of arbitrary radius and hydrogen bonds are indicated by dashed lines.
4.3424 (2) \AA. The piperidinium cations crosslink the poly(hydrogenarsenate) chains along [100] by way of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). This results in (001) sheets (Fig. 3) that interact with each other by way of van der Waals forces. Overall, O1 accepts two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds $[\theta(\mathrm{H} \cdots \mathrm{O} \cdots \mathrm{H})=$ $\left.118^{\circ}\right]$ and O 2 accepts two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds $[\theta(\mathrm{H} \cdots \mathrm{O} \cdots \mathrm{H})=$ $\left.94^{\circ}\right]$.

Experimental

6 ml of an aqueous $1 M$ piperidine solution and 6 ml of an aqueous $0.5 \mathrm{M} \mathrm{H}_{3} \mathrm{AsO}_{4}$ solution were mixed, resulting in a yellow solution which was sealed in a sample bottle. Block-like crystals of (I) grew over the course of a few weeks.

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$
$M_{r}=227.09$
Monoclinic, $P 2_{d}$
$a=8.6593$ (4) A
$b=6.3233$ (3) A
$c=8.9090$ (4) A
$\beta=112.676$ (1) ${ }^{\circ}$
$V=450.11$ (4) \AA^{3}
$Z=2$
$D_{x}=1.676 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4144
\quad reflections
$\theta=2.5-32.5^{\circ}$
$\mu=3.75 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Chunk, colourless
$0.56 \times 0.53 \times 0.36 \mathrm{~mm}$

Data collection

Bruker SMART1000 CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.171, T_{\text {max }}=0.259$
5328 measured reflections

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.002$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.042$
$S=1.00$
3187 reflections
101 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0246 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Detail of a hydrogen-bonded piperidinium/dihydrogenarsenate (001) sheet in (I). Colour key: $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$tetrahedra yellow, O atoms red, C atoms blue, N atoms green, H atoms grey (all radii arbitrary). The $\mathrm{H} \cdots \mathrm{O}$ portions of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are highlighted in yellow and orange, respectively. Symmetry codes are as in Table 2 ; additionally (iv) $1-x, y-\frac{1}{2}, 2-z$.

Figure 3
[010] projection of (I). Colour key as in Fig. 2.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Averbuch-Pouchot, M. T. \& Durif, A. (1987). Acta Cryst. C43, 1894-1896. Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lee, C. \& Harrison, W. T. A. (2003). Acta Cryst. E59, m739-m741.
Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

