Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Clare Lee and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.018 wR factor = 0.042 Data-to-parameter ratio = 31.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Piperidinium dihydrogenarsenate

A combination of $O-H\cdots O$ [$d_{av}(H\cdots O) = 1.73$ Å; $\theta_{av}(O-H\cdots O) = 156^\circ$; $d_{av}(O\cdots O) = 2.609$ (3) Å] and $N-H\cdots O$ [$d_{av}(H\cdots O) = 1.85$ Å; $\theta_{av}(N-H\cdots O) = 169^\circ$; $d_{av}(N\cdots O) = 2.740$ (2) Å] hydrogen bonds defines a layered structure for the title compound, ($C_5H_{12}N$)[H_2AsO_4].

Comment

The title compound, (I) (Fig. 1), complements other simple ammonium arsenates, such as ethylenediammonium hydrogenarsenate, $(C_2H_{10}N_2)[HAsO_4]$ (Averbuch-Pouchot & Durif, 1987) and propane-1,2-diammonium hydrogenarsenate hydrate, $(C_3H_{12}N_2)[HAsO_4].H_2O$ (Lee & Harrison, 2003).

The structure of (I) consists of $(C_5H_{12}N)^+$ piperidinium cations and $[H_2AsO_4]^-$ dihydrogenarsenate anions. The cation adopts a typical chair conformation with unexceptional geometrical paramaters $[d_{av}(N-C) = 1.484 (3) \text{ Å}; d_{av}(C-C) =$ 1.515 (3) Å]. The anion shows its typical tetrahedral geometry $[d_{av}(As-O) = 1.683 (2) \text{ Å}]$, with the As-O bonds showing their expected lengthening relative to the As=O bonds.

As well as electrostatic attractions, the component species in (I) interact by means of $N-H\cdots O$ and $O-H\cdots O$ links (Table 2). The $[H_2AsO_4]^-$ units are linked into a polymeric chain in the polar [010] direction by pairs of hydrogen bonds (Fig. 2) such that every $[H_2AsO_4]^-$ tetrahedron makes an O- $H\cdots O$ bond to each of its neighbours in the chain. This results in an $As\cdots As^i$ (see Table 2 for symmetry code) separation of

Figure 1

The asymmetric unit of (I) (30% displacement ellipsoids). H atoms are drawn as spheres of arbitrary radius and hydrogen bonds are indicated by dashed lines.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 23 September 2003 Accepted 29 September 2003 Online 7 October 2003

metal-organic papers

4.3424 (2) Å. The piperidinium cations crosslink the poly-(hydrogenarsenate) chains along [100] by way of $N-H \cdots O$ hydrogen bonds (Table 2). This results in (001) sheets (Fig. 3) that interact with each other by way of van der Waals forces. Overall, O1 accepts two N-H···O bonds $[\theta(H···O···H) =$ 118°] and O2 accepts two O-H···O bonds $[\theta(H···O···H) =$ 94°].

Experimental

6 ml of an aqueous 1 M piperidine solution and 6 ml of an aqueous $0.5 M H_3 AsO_4$ solution were mixed, resulting in a yellow solution which was sealed in a sample bottle. Block-like crystals of (I) grew over the course of a few weeks.

 $D_{\rm r} = 1.676 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 4144

Mo $K\alpha$ radiation

reflections

 $\theta = 2.5 - 32.5^{\circ}$ $\mu = 3.75 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int}=0.014$

 $\theta_{\rm max} = 32.5^{\circ}$

 $h = -12 \rightarrow 13$

 $k = -9 \rightarrow 9$

 $l = -11 \rightarrow 13$

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $\Delta \rho_{\rm max} = 0.27 \text{ e Å}$ $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

1504 Friedel pairs

Flack parameter = 0.063 (8)

Chunk, colourless

 $0.56 \times 0.53 \times 0.36~\text{mm}$

3187 independent reflections

2936 reflections with $I > 2\sigma(I)$

Extinction correction: SHELXL97

Extinction coefficient: 0.0311 (18) Absolute structure: Flack (1983),

Crystal data

 $(C_5H_{12}N)[H_2AsO_4]$ $M_r = 227.09$ Monoclinic, P2 a = 8.6593 (4) Åb = 6.3233 (3) Å c = 8.9090 (4) Å $\beta = 112.676 (1)^{\circ}$ $V = 450.11 (4) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART1000 CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\min} = 0.171, T_{\max} = 0.259$ 5328 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.018$ wR(F²) = 0.042 S = 1.003187 reflections 101 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0246P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Table 1

Selected geometric parameters (Å).

As1-O1	1.6431 (11)	As1-O3	1.7100 (11)
As1-O2	1.6622 (8)	As1-O4	1.7161 (13)

Table	2
-------	---

Undrogon bonding	acomotry	()	01
11vulogen-bonums	geometry	LA.	
	,	× 2	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H1\cdots O2^i$	0.85	1.74	2.588 (2)	169
$O4-H2\cdot\cdot\cdot O2^{ii}$	1.00	1.72	2.629 (3)	149
$N1-H3\cdots O1^{iii}$	0.90	1.85	2.720 (2)	162
$N1-H4\cdots O1$	0.90	1.86	2.759 (2)	176
Symmetry codes: (i)	$2-x, \frac{1}{2}+y, 2-$	z; (ii) $2 - x, y - z$	$-\frac{1}{2}, 2-z;$ (iii) $1-z$	$x, \frac{1}{2} + y, 2 - z.$

The oxygen-bound H atoms were found in difference maps and were refined as riding in their as-found positions. H atoms bonded to C and N atoms were placed in calculated positions [d(C-H) =0.97 Å; d(N-H) = 0.90 Å] and refined as riding. The constraint $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm parent atom})$ was applied in all cases.

Figure 2

Detail of a hydrogen-bonded piperidinium/dihydrogenarsenate (001) sheet in (I). Colour key: [H₂AsO₄]⁻ tetrahedra yellow, O atoms red, C atoms blue, N atoms green, H atoms grey (all radii arbitrary). The H...O portions of the O-H···O and N-H···O hydrogen bonds are highlighted in yellow and orange, respectively. Symmetry codes are as in Table 2; additionally (iv) 1 - x, $y - \frac{1}{2}$, 2 - z.

Figure 3

[010] projection of (I). Colour key as in Fig. 2.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Averbuch-Pouchot, M. T. & Durif, A. (1987). Acta Cryst. C43, 1894-1896.

- Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739-m741.
- Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.